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A first example

Let us compute sin(0) and sin(π) using Python.

Image from https://fr.wikipedia.org/wiki/Fichier:Python-logo-notext.svg
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Floating-point numbers in a nutshell

Rough idea
Floating-point numbers use the “scientific notation” on base 2, where both
the significand and the exponent are written with a given number of bits.

Given a sequence of 64 binary digits

b63b62 · · · b1b0,

one defines the sign s by s := b63 and the biased exponent e as the integer
whose representation in binary is b62 · · · b52. Then, the floating-point
number encoded by b is

(−1)s · (1.b51b50 · · · b0)2 · 2e−1023.

F: set of finite 64 bit (double precision) floating-point numbers.
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More about floating-point numbers

Nowadays, most of the floating-point units use the IEEE 754 standard.

There are several implementation subtleties:

representations for ±∞;
several representations of 0, depending on the sign (e.g.

1/0+ = +∞,

1/0− = −∞...

yet 0+ = 0−!).

Note: in practice, Python raises a ZeroDivisionError.

“not-a-number” (NaN, e.g. 0/0);
there is not a well-defined total order!
etc.
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How not to launch a rocket

Figure: An Ariane 5 launcher (click for the video)

Image from https://commons.wikimedia.org/wiki/File:
Ariane_5_with_James_Webb_Space_Telescope_Prelaunch_(51773093465).jpg,
video from https://www.youtube.com/watch?v=1qRUFg-Pte0
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What happened?

Roughly speaking:

some code that worked perfectly on Ariane 4 was reused in Ariane 5;
a particular quantity was stocked on 16 bits in this code (this is not
so much!);
at some point, an overflow occurred, basically causing the rocket
suddenly believing it was horizontal and not vertical, causing the
failure of the launch.

The failure came entirely from the program used!

To summarize:

A first (obvious) limitation of numerical computations
F is finite!

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 6
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Rounding modes

Since F is finite, not all real numbers may be represented by floating-point
numbers.

Perhaps worse, even if a, b are floating-point numbers, a + b may not be
such a number.

There are thus several rounding modes, depending on whether the result is
to be rounded up, down, towards zero, etc.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 7
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Accumulation of round-off errors
The Vancouver stock index

Between 1982 and 1983, the Vancouver stock index dropped anomalously
due to the accumulation of small round-off errors, due to the fact that
quantities were always rounded down after each computation.

Figure: The BEL20 stock index

Image from https://commons.wikimedia.org/wiki/File:BEL_20.svg
Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 8
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Accumulation of round-off errors
Patriot missiles

In 1991, American Patriot missiles failed to intercept an incoming Scud
missile, killing 28 soldiers and injuring 100 other people, due to a bad
computation of internal time due to an accumulation of round-off errors.

Figure: A Patriot missile launch

Image from
https://upload.wikimedia.org/wikipedia/commons/f/f8/Patriot_missile_launch_b.jpg
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Summary of limitations

When numerical computations are performed, there are typically two,
rather distinct, “sources of errors”:

1 approximation errors;
2 round-off errors.

Example
Several errors occur when approximating

∫ 1
0 f (x) dx : details on the

blackboard!

Approximation errors are typically studied by numerical analysts: rigorous
error bounds, convergence results, etc.

As for round-off errors, in “practical applications” it is important to be
aware of them and to keep them small by design. This typically
involves a suitable stability analysis of the numerical methods.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 10
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Where are we now?

For us, an important question remains.

How to obtain mathematically rigorous results based on numerical
computations?

If only one could ignore round-off errors...

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 11

./videos/sorry_dave.mp4


Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Where are we now?

For us, an important question remains.

How to obtain mathematically rigorous results based on numerical
computations?

If only one could ignore round-off errors...

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 11

./videos/sorry_dave.mp4


Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

A simple solution?
The main idea of interval arithmetic is very simple, yet powerful.

The idea of interval arithmetic
We will replace numbers by intervals

in such a way that the result of
an operation belongs to the returned interval.

Appealing:
to analysts: this is a quantitative version of the ε’s and the δ’s;
to physicists: physical measurements are performed up to a finite
precision anyway.

Although this may seem a paradox, all exact science is dominated by the
idea of approximation.

— Bertrand Russell, The Scientific Outlook

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 12
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The class IR of intervals

The intervals we will consider are the topologically closed and connected
subsets of R (as specified in the standard IEEE-1788 devoted to interval
arithmetic1), i.e. they belong to the class IR of subsets of R defined by

IR :=
{

∅
}

∪
{

[a, b] | a, b ∈ R, a ≤ b
}

∪
{

[a, +∞[ | a ∈ R
}

∪
{

]−∞, b] | b ∈ R
}

∪
{

]−∞, +∞[ := R
}

.

1See https://standards.ieee.org/ieee/1788/4431/.
Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 13
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Operations on intervals

Given two intervals x and y, their sum is given by

x + y :=
{

x + y | x ∈ x, y ∈ y
}

,

their difference by

x − y :=
{

x − y | x ∈ x, y ∈ y
}

and their product by

x · y :=
{

x · y | x ∈ x, y ∈ y
}

.

Examples and surprises: on the blackboard!

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 14
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

In general: interval extensions

Definition
Let D ⊆ R be a set and let F : D → R be a map.

An interval extension of F is an application F : IR → IR which satisfies
the containment property, namely so that for all x ∈ IR, the set

F (x) :=
{

F (x) | x ∈ x ∩ D
}

is included in F(x).

Examples on the blackboard!

Compare extensions of F : R → R : x 7→ x2

with the product operation.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 15
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Fundamental theorem of interval arithmetic

Theorem
If interval extensions of real functions f1, . . . , fk are composed, the result is
an interval extension of the composition f1 ◦ · · · ◦ fk .

Allows to obtain interval extensions of complicated functions by composing
interval extensions of its subparts.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 16
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

In practice

The set IR is a mathematical notion.

In practice, the implementation will use intervals from the set

IF :=
{

x = [x , x ] | x ≤ x are two floating-point numbers
}

∪
{

∅
}

.
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Back to the computation of sin(π)

Let us use the “mpmath” library2 in Python3 and ask the value of

iv.pi

then
iv.sin(iv.pi).

2See in particular the module iv, devoted to interval arithmetic at https://www.mpmath.org/doc/1.0.0/contexts.html.
Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 18
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

What interval arithmetic can and cannot do

It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example
Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.

If a returned interval is “too big”, it is valid but useless.
For instance, iv.sin(x) could return [-1, 1] regardless of the
value of x, but this bound is useless.
Nevertheless, it is in principle possible to show that given matrices are
invertible, positive/negative definite... using interval arithmetic.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 19
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Locating roots of a function

Let F : [0, 1] → R. If F is an interval extension of F and if x ∈ IR is
included in [0, 1], then

the implication(
0 /∈ F(x)

)
=⇒

(
x does not contain any roots of F

)
holds.

We may thus divide [0, 1] into many “small” intervals and discard all those
for which we are sure that F has no roots, this being determined by
evaluating the interval extension F. We end up with (possibly many) small
intervals such that all potential roots of F belong to one of those.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 20
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Application of interval arithmetic to nonlinear analysis
Existence of the Lorenz strange attractor

The system of ODEs

∂tx1 = −σx1 + σx2

∂tx2 = ρx1 − x2 − x1x3,

∂tx3 = −βx3 + x1x2

was introduced by Edward Lorenz in 1963 as a simple model of
atmospheric dynamics.

Remarkably, this system is chaotic (i.e., it is very sensitive to the initial
conditions in long time)

and possesses a strange attractor.

This fact, though conjectured since the 1960s, was only proved by Warwick
Tucker in 1999, using a computer-assisted proof using interval arithmetic.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 21
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

What is a compact metric graph?

A compact metric graph is made of a finite number of vertices

and of
edges joining the vertices.

Metric graphs: the lengths of edges are important.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 22



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

What is a compact metric graph?

A compact metric graph is made of a finite number of vertices and of
edges joining the vertices.

Metric graphs: the lengths of edges are important.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 22



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

What is a compact metric graph?

A compact metric graph is made of a finite number of vertices and of
edges joining the vertices.

Metric graphs: the lengths of edges are important.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 22



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Functions defined on metric graphs

G
ff0

e0

f1

e1

f2
e2

f0

f1
f2

A compact metric graph G with three edges e0 (length 5), e1 (length 4) and e2
(length 3)

, a function f : G → R, and the three associated real functions.

∫
G

f dx :=
∫ 5

0
f0(x) dx +

∫ 4

0
f1(x) dx +

∫ 3

0
f2(x) dx

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 23
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

The spectral problem on metric graphs

We are interested in solutions (γ, u), with u ̸= 0, of the differential system



−u′′ = γu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v

(Kirchhoff’s condition).

Remark: we always have dim E1 = 1 with γ1 = 0, considering constant
functions.

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 24
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

Kirchoff’s condition: degree one nodes

x1
∞

lim
t−−→

t>0
0

u(x1 + t) − u(x1)
t = 0

In other words, the derivative of u at x1 vanishes: this is the usual
Neumann condition.
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Kirchoff’s condition in general: outgoing derivatives

x1

∑
e≻v

du
dxe

(v) = 0

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 26



Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

The nonlinear Schrödinger equation on metric graphs

We generalize the spectral problem by introducing a nonlinear term (which
appears in models of optic fibers, Bose-Einstein condensates...).

Given p ≥ 2, we are interested in solutions of
−u′′ + λu = γ2|u|p−2u on every edge of G,

u is continuous on G,∑
e≻v

du
dxe

(v) = 0 for every vertex v .

(Pp)

When p = 2, the solutions of (Pp) are the eigenfunctions in E2.

Question
What about p > 2?

Damien Galant Introduction to computer-assisted proofs in nonlinear analysis 27
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Floating-point computations Interval arithmetic Application: study of NLS on metric graphs

The quasilinear regime p ≈ 2 (p > 2)

Proposition
Let (pn)n≥1 ⊆ ]2, +∞[ be a sequence of exponents which converges to 2

and (upn)n≥1 ⊆ H1(G) be a sequence of nonzero solutions to the problems
(Ppn). Assume that (upn)n converges weakly in H1(G) to a function
u∗ ∈ H1(G). Then, u∗ belongs to E2 and one has∫

G
u∗ ln |u∗|φ dx = 0 ∀φ ∈ E2.

We say that u∗ ∈ E2 is a solution of the reduced problem if the above
condition holds.
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Variational formulation

The functional J∗ : E2 → R

J∗(φ) := 1
4

∫
G

φ2(x)
(
1 − 2 ln |φ(x)|

)
dx

is of class C1, and the solutions of the reduced problem coincide with its
critical points.

We thus have two goals:

1 find all nonzero critical points φ∗ ∈ E2 of J∗;
2 determine the nondegenerate critical points φ∗ ∈ E2, namely those for

which the Hessian J ′′
∗ (φ∗) is invertible

(when it is defined, which is
not always the case, but this is another story);

Using a “Lyapunov-Schmidt” argument, we can show existence and
uniqueness results around a nondegenerate critical point for (Pp),
when p ≈ 2.
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The tetrahedron

In the remainder of the talk, we will only consider the following graph Gt.

v0

v1

v2

v3
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Second eigenspace and symmetries of Gt

One may explicitly determine the second eigenspace for Gt . It turns out
that dim E2 = 3.

Moreover, the group
Gt := S4 × {±1}

acts on E2 due to the fact that “all vertices of the tetrahedron are the
same” and that one may replace φ by −φ.

In this way, we obtain an isometric group action

Gt × E2 → E2 : (g , φ) 7→ g · φ,

such that J∗(g · φ) = J∗(φ) for all (g , φ) ∈ Gt × E2.
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Critical points created by the symmetries

The presence of such a rich symmetry group entails the existence of four
distinct families of critical points, due to the principle of symmetric
criticality.

Theorem (Principle of symmetric criticality, Palais, 1979)
Assume that the action of the topological group G on the Hilbert space E
is isometric.

If J ∈ C1(E , R) is invariant under this action and if u is a
critical point of J restricted to

Fix(G) :=
{

u ∈ E | ∀g ∈ G , g · u = u
}

,

then u is a critical point of J.
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A natural question

Critical point theory (using the principle of symmetric criticality, Morse
theory, etc), will give relations on the number of critical points and the
existence of some specific symmetric critical points.

However, it cannot classify all critical points of J∗.

Question
Does J∗ possess critical points other than the ones of the four
aforementioned families?
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A computer-assisted answer

Theorem (De Coster, G., Troestler (2024))
All critical points of J∗ : E2 → R (for the tetrahedron graph) belong to
one of the four families obtained thanks to the symmetries.

Strategy of the proof:

1 locating small “boxes” containing all critical points of J∗, by root
finding methods.

2 proving uniqueness of critical points inside each box using second
order information.

After a careful implementation and some computing time...
Things worked out!
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